HyperAI

Noise Estimation On Sidd

Métriques

Average KL Divergence
PSNR Gap

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAverage KL DivergencePSNR Gap
grdngrouped-residual-dense-network-for-real0.4432.28
toward-convolutional-blind-denoising-of-real0.7288.30
learning-to-generate-realistic-noisy-images-20.1530.84
unprocessing-images-for-learned-raw-denoising0.5454.90
dual-adversarial-network-toward-real-world0.2122.06