HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Node Classification
Node Classification On Texas
Node Classification On Texas
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
2-HiGCN
92.45±0.73
Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes
HLP Concat
87.57 ± 5.44
Simple Truncated SVD based Model for Node Classification on Heterophilic Graphs
-
MGNN + Hetero-S (8 layers)
93.09
The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs
-
Diag-NSD
85.67 ± 6.95
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GGCN
84.86 ± 4.55
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
MixHop
77.84 ± 7.73
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
ACM-GCN+
88.38 ± 3.64
Revisiting Heterophily For Graph Neural Networks
UniG-Encoder
85.40±5.3
UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node Classification
ACM-SGC-2
81.89 ± 4.53
Revisiting Heterophily For Graph Neural Networks
SADE-GCN
86.49±5.12
Self-attention Dual Embedding for Graphs with Heterophily
-
Geom-GCN-S
59.73
Geom-GCN: Geometric Graph Convolutional Networks
GloGNN++
84.05±4.90
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
Gen-NSD
82.97 ± 5.13
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
LINKX+CausalMP
57.36±0.60
Heterophilic Graph Neural Networks Optimization with Causal Message-passing
-
IIE-GNN
85.84±4.23
Enhancing Intra-class Information Extraction for Heterophilous Graphs: One Neural Architecture Search Approach
-
M2M-GNN
89.19 ± 4.5
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
DeltaGNN constant
74.05±3.08
DeltaGNN: Graph Neural Network with Information Flow Control
LINKX
74.60 ± 8.37
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
NLMLP
85.4 ± 3.8
Non-Local Graph Neural Networks
FSGNN
87.30 ± 5.55
Improving Graph Neural Networks with Simple Architecture Design
0 of 62 row(s) selected.
Previous
Next