HyperAI

Node Classification On Pokec

Métriques

Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAccuracy
finding-global-homophily-in-graph-neural83.05±0.07
classic-gnns-are-strong-baselines-reassessing86.33 ± 0.17
polynormer-polynomial-expressive-graph86.10±0.05
learning-long-range-dependencies-on-graphs86.46 ± 0.09
graph-neural-networks-with-learnable-and82.83±0.04
feature-selection-key-to-enhance-node81.55±0.09
large-scale-learning-on-non-homophilous82.04±0.07