HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Node Classification
Node Classification On Genius
Node Classification On Genius
Métriques
1:1 Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
1:1 Accuracy
Paper Title
Repository
GESN
91.72 ± 0.08
Addressing Heterophily in Node Classification with Graph Echo State Networks
LINKX
-
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
ACM-GCN++
-
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
-
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
-
Revisiting Heterophily For Graph Neural Networks
GPRGCN
-
Adaptive Universal Generalized PageRank Graph Neural Network
GCNJK
-
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
ACMII-GCN+
-
Revisiting Heterophily For Graph Neural Networks
GCNII
-
Simple and Deep Graph Convolutional Networks
LINK
-
New Benchmarks for Learning on Non-Homophilous Graphs
MixHop
-
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
Dual-Net GNN
-
Feature Selection: Key to Enhance Node Classification with Graph Neural Networks
GloGNN
-
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
L Prop 2-hop
-
New Benchmarks for Learning on Non-Homophilous Graphs
L Prop 1-hop
-
New Benchmarks for Learning on Non-Homophilous Graphs
APPNP
-
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
SGC 2-hop
-
Simplifying Graph Convolutional Networks
GloGNN++
-
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
C&S 1-hop
-
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
SGC 1-hop
-
Simplifying Graph Convolutional Networks
0 of 26 row(s) selected.
Previous
Next