HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Classification de nœud
Node Classification On Cornell
Node Classification On Cornell
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
CT-Layer
69.04
DiffWire: Inductive Graph Rewiring via the Lovász Bound
-
ACM-GCN++
85.68 ± 5.8
Revisiting Heterophily For Graph Neural Networks
-
RDGNN-I
92.72 ± 5.88
Graph Neural Reaction Diffusion Models
-
Gen-NSD
85.68 ± 6.51
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
-
SADE-GCN
86.21±5.59
Self-attention Dual Embedding for Graphs with Heterophily
-
Geom-GCN-I
56.76
Geom-GCN: Geometric Graph Convolutional Networks
-
GREET+CausalMP
68.23±2.90
Heterophilic Graph Neural Networks Optimization with Causal Message-passing
-
UniG-Encoder
86.75±6.56
UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node Classification
-
Geom-GCN-S
55.68
Geom-GCN: Geometric Graph Convolutional Networks
-
PathNet
-
Beyond Homophily: Structure-aware Path Aggregation Graph Neural Network
GloGNN
83.51±4.26
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
-
H2GCN-1
78.11 ± 6.68
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
-
ACM-SGC-1
82.43 ± 5.44
Revisiting Heterophily For Graph Neural Networks
-
GPRGCN
78.11 ± 6.55
Adaptive Universal Generalized PageRank Graph Neural Network
-
DeltaGNN - control + DC
75.67±1.91
DeltaGNN: Graph Neural Network with Information Flow Control
-
ACM-SGC-2
82.43 ± 5.44
Revisiting Heterophily For Graph Neural Networks
-
ACMII-GCN
85.95 ± 5.64
Revisiting Heterophily For Graph Neural Networks
-
GRADE-GAT
83.3±7.0
Graph Neural Aggregation-diffusion with Metastability
-
CNMPGNN
82.38 ± 6.13
CN-Motifs Perceptive Graph Neural Networks
-
ACMII-GCN++
86.49 ± 6.73
Revisiting Heterophily For Graph Neural Networks
-
0 of 60 row(s) selected.
Previous
Next
Node Classification On Cornell | SOTA | HyperAI