HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Node Classification
Node Classification On Chameleon
Node Classification On Chameleon
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
GCNH
71.56±1.86
GCNH: A Simple Method For Representation Learning On Heterophilous Graphs
Dir-GNN
79.71±1.26
Edge Directionality Improves Learning on Heterophilic Graphs
H2GCN-1
52.96 ± 2.09
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
GCNII
63.86 ± 3.04
Simple and Deep Graph Convolutional Networks
H2GCN-2
58.38 ± 1.76
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
ACM-GCN
69.14 ± 1.91
Revisiting Heterophily For Graph Neural Networks
SADE-GCN
75.57±1.57
Self-attention Dual Embedding for Graphs with Heterophily
-
NLMLP
50.7 ± 2.2
Non-Local Graph Neural Networks
ACM-SGC-1
63.99 ± 1.66
Revisiting Heterophily For Graph Neural Networks
CNMPGNN
73.29±1.29
CN-Motifs Perceptive Graph Neural Networks
-
CATv3-sup
69.9±1.0
CAT: A Causally Graph Attention Network for Trimming Heterophilic Graph
LINKX
68.42 ± 1.38
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
SDRF
42.73±0.15
Understanding over-squashing and bottlenecks on graphs via curvature
LHS
72.31±1.6
Refining Latent Homophilic Structures over Heterophilic Graphs for Robust Graph Convolution Networks
-
NLGCN
70.1 ± 2.9
Non-Local Graph Neural Networks
LSC-ARMA
68.4 ± 2.3
Restructuring Graph for Higher Homophily via Adaptive Spectral Clustering
-
FSGNN (3-hop)
78.14±1.25
Improving Graph Neural Networks with Simple Architecture Design
Conn-NSD
65.21±2.04
Sheaf Neural Networks with Connection Laplacians
IIE-GNN
72.13±2.11
Enhancing Intra-class Information Extraction for Heterophilous Graphs: One Neural Architecture Search Approach
-
M2M-GNN
75.20 ± 2.3
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
0 of 61 row(s) selected.
Previous
Next