HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Classification de nœud
Node Classification On Amz Photo
Node Classification On Amz Photo
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
GLNN
92.11± 1.08%
Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation
-
GraphSAGE
95.03%
Half-Hop: A graph upsampling approach for slowing down message passing
-
HH-GraphSAGE
94.55%
Half-Hop: A graph upsampling approach for slowing down message passing
-
NCSAGE
95.93 ± 0.36
Clarify Confused Nodes via Separated Learning
-
HH-GCN
94.52%
Half-Hop: A graph upsampling approach for slowing down message passing
-
CGT
95.73±0.84
Mitigating Degree Biases in Message Passing Mechanism by Utilizing Community Structures
-
Graph InfoClust (GIC)
90.4 ± 1.0
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning
-
JK (Heat Diffusion)
92.93%
Diffusion Improves Graph Learning
-
Exphormer
95.35±0.22%
Exphormer: Sparse Transformers for Graphs
-
SIGN
91.72 ± 1.20
SIGN: Scalable Inception Graph Neural Networks
-
NCGCN
95.45 ± 0.45
Clarify Confused Nodes via Separated Learning
-
DAGNN (Ours)
92%
Towards Deeper Graph Neural Networks
-
GCN
93.59%
Half-Hop: A graph upsampling approach for slowing down message passing
-
CPF-ind-GAT
94.10%
Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework
-
0 of 14 row(s) selected.
Previous
Next
Node Classification On Amz Photo | SOTA | HyperAI