HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Network Pruning
Network Pruning On Imagenet
Network Pruning On Imagenet
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
MobileNetV1-50% FLOPs
70.7
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-2.3 GFLOPs
78.79
Pruning Filters for Efficient ConvNets
ResNet50-1G FLOPs
74.2
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-1G FLOPs
74.2
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-1.5 GFLOPs
78.07
Pruning Filters for Efficient ConvNets
TAS-pruned ResNet-50
76.20
Network Pruning via Transformable Architecture Search
ResNet50
73.14
AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks
ResNet50-2G FLOPs
76.4
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50-1G FLOPs
76.376
Pruning Filters for Efficient ConvNets
SqueezeNet (6-bit Deep Compression)
57.5%
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
RegX-1.6G
77.97
Group Fisher Pruning for Practical Network Compression
ResNet50-3G FLOPs
77.1
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
ResNet50 2.0 GFLOPS
77.70
Knapsack Pruning with Inner Distillation
ResNet50 2.5 GFLOPS
78.0
Knapsack Pruning with Inner Distillation
ResNet50
75.59
Network Pruning That Matters: A Case Study on Retraining Variants
MobileNetV2
73.42
Group Fisher Pruning for Practical Network Compression
0 of 16 row(s) selected.
Previous
Next