Music Source Separation On Musdb18 Hq
Métriques
SDR (avg)
SDR (bass)
SDR (drums)
SDR (others)
SDR (vocals)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | SDR (avg) | SDR (bass) | SDR (drums) | SDR (others) | SDR (vocals) |
---|---|---|---|---|---|
Modèle 1 | 11.99 | 13.32 | 12.91 | 9.01 | 12.72 |
cws-presunet-music-source-separation-with | 6.77 | 5.93 | 6.38 | 5.84 | 8.92 |
transfer-learning-with-jukebox-for-music | 4.188 | 4.073 | 4.925 | 2.695 | 5.06 |
Modèle 4 | 9.80 | 11.31 | 9.49 | 7.73 | 10.66 |
scnet-sparse-compression-network-for-music | 9.00 | 8.82 | 10.51 | 6.76 | 9.89 |
sound-demixing-challenge-2023-music-demixing | 8.34 | 8.45 | 8.44 | 6.86 | 9.59 |
music-source-separation-with-band-split-rnn | 8.97 | 8.16 | 10.15 | 7.08 | 10.47 |
music-source-separation-based-on-a | 8.15 | 7.55 | 7.82 | 7.02 | 10.21 |
hybrid-transformers-for-music-source | 9.00 | 10.39 | 10.08 | 6.32 | 9.20 |
hybrid-transformers-for-music-source | 9.20 | 10.47 | 10.83 | 6.41 | 9.37 |
hybrid-spectrogram-and-waveform-source | 7.68 | 8.76 | 8.24 | 5.59 | 8.13 |
kuielab-mdx-net-a-two-stream-neural-network | 7.47 | 7.83 | 7.20 | 5.90 | 8.97 |
music-source-separation-with-band-split-rnn | 8.24 | 7.22 | 9.01 | 6.70 | 10.01 |
scnet-sparse-compression-network-for-music | 9.69 | 9.49 | 10.98 | 7.44 | 10.86 |