HyperAI

Music Source Separation On Musdb18 Hq

Métriques

SDR (avg)
SDR (bass)
SDR (drums)
SDR (others)
SDR (vocals)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleSDR (avg)SDR (bass)SDR (drums)SDR (others)SDR (vocals)
Modèle 111.9913.3212.919.0112.72
cws-presunet-music-source-separation-with6.775.936.385.848.92
transfer-learning-with-jukebox-for-music4.1884.0734.9252.6955.06
Modèle 49.8011.319.497.7310.66
scnet-sparse-compression-network-for-music9.008.8210.516.769.89
sound-demixing-challenge-2023-music-demixing8.348.458.446.869.59
music-source-separation-with-band-split-rnn8.978.1610.157.0810.47
music-source-separation-based-on-a8.157.557.827.0210.21
hybrid-transformers-for-music-source9.0010.3910.086.329.20
hybrid-transformers-for-music-source9.2010.4710.836.419.37
hybrid-spectrogram-and-waveform-source7.688.768.245.598.13
kuielab-mdx-net-a-two-stream-neural-network7.477.837.205.908.97
music-source-separation-with-band-split-rnn8.247.229.016.7010.01
scnet-sparse-compression-network-for-music9.699.4910.987.4410.86