HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Music Modeling
Music Modeling On Nottingham
Music Modeling On Nottingham
Métriques
NLL
Parameters
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
NLL
Parameters
Paper Title
Repository
Seq-U-Net
2.97
1.7M
Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling
GRU
3.46
-
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
Transformer
3.34
-
R-Transformer: Recurrent Neural Network Enhanced Transformer
TCN
2.783
1.7M
Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling
LSTM
3.29
-
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
R-Transformer
2.37
-
R-Transformer: Recurrent Neural Network Enhanced Transformer
TCN
3.07
-
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
RNN
4.05
-
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
0 of 8 row(s) selected.
Previous
Next