HyperAI

Multi Person Pose Estimation On Coco Test Dev

Métriques

AP
APL
APM

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
AP
APL
APM
Paper TitleRepository
Hourglass-10465.668.863.3Greedy Offset-Guided Keypoint Grouping for Human Pose Estimation
SPM66.973.162.6Single-Stage Multi-Person Pose Machines
HigherHRNet (ScaleNet_P4)71.677.267.5ScaleNAS: One-Shot Learning of Scale-Aware Representations for Visual Recognition-
Identity Mapping Hourglass68.170.566.8Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
ResNet5073.7--AID: Pushing the Performance Boundary of Human Pose Estimation with Information Dropping Augmentation
CMU-Pose61.868.257.1Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
HRNet-W3276.2--AID: Pushing the Performance Boundary of Human Pose Estimation with Information Dropping Augmentation
PersonLab68.775.564.1PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model
HigherHRNet (HR-Net-48)70.575.866.6HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation
G-RMI64.970.062.3Towards Accurate Multi-person Pose Estimation in the Wild-
RMPE61.867.658.6RMPE: Regional Multi-person Pose Estimation
SMPR (HR-Net-32)70.277.265.9SMPR: Single-Stage Multi-Person Pose Regression
SCIO (HRNet-48)79.284.274.1Self-Constrained Inference Optimization on Structural Groups for Human Pose Estimation-
HRNet-W48plus78.7--AID: Pushing the Performance Boundary of Human Pose Estimation with Information Dropping Augmentation
Supervising Self-Attention66.5--Attend to Who You Are: Supervising Self-Attention for Keypoint Detection and Instance-Aware Association
0 of 15 row(s) selected.