HyperAIHyperAI

Multi Object Tracking On Mot17

Métriques

MOTA

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
MOTA
Paper TitleRepository
JBNOT52.6Multiple People Tracking using Body and Joint Detections-
SparseTrack81.0SparseTrack: Multi-Object Tracking by Performing Scene Decomposition based on Pseudo-Depth-
StrongSORT79.6StrongSORT: Make DeepSORT Great Again-
Fast-StrongSORT-When to Extract ReID Features: A Selective Approach for Improved Multiple Object Tracking-
DEFT66.6DEFT: Detection Embeddings for Tracking-
Unicorn77.2Towards Grand Unification of Object Tracking-
CenterTrack + TrajE67.8Multiple Object Tracking with Mixture Density Networks for Trajectory Estimation-
CMTrack80.7A Confidence-Aware Matching Strategy For Generalized Multi-Object Tracking
BoostTrack+80.6BoostTrack: boosting the similarity measure and detection confidence for improved multiple object tracking
STGT76.7TransMOT: Spatial-Temporal Graph Transformer for Multiple Object Tracking-
Deep OC-SORT79.4Deep OC-SORT: Multi-Pedestrian Tracking by Adaptive Re-Identification-
TraDeS69.1Track to Detect and Segment: An Online Multi-Object Tracker-
BoT-SORT80.5BoT-SORT: Robust Associations Multi-Pedestrian Tracking-
C-TWiX78.1Learning Data Association for Multi-Object Tracking using Only Coordinates-
GTR75.3Global Tracking Transformers-
QDTrack68.7Quasi-Dense Similarity Learning for Multiple Object Tracking-
IMM-JHSE79.54One Homography is All You Need: IMM-based Joint Homography and Multiple Object State Estimation-
DeepMOT-Tracktor53.7How To Train Your Deep Multi-Object Tracker-
TrackFormer74.1TrackFormer: Multi-Object Tracking with Transformers-
MOTR67.4MOTR: End-to-End Multiple-Object Tracking with Transformer-
0 of 44 row(s) selected.