HyperAI

Multi Object Tracking On Mot17

Métriques

MOTA

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
MOTA
Paper TitleRepository
JBNOT52.6Multiple People Tracking using Body and Joint Detections-
SparseTrack81.0SparseTrack: Multi-Object Tracking by Performing Scene Decomposition based on Pseudo-Depth
StrongSORT79.6StrongSORT: Make DeepSORT Great Again
Fast-StrongSORT-When to Extract ReID Features: A Selective Approach for Improved Multiple Object Tracking
DEFT66.6DEFT: Detection Embeddings for Tracking
Unicorn77.2Towards Grand Unification of Object Tracking
CenterTrack + TrajE67.8Multiple Object Tracking with Mixture Density Networks for Trajectory Estimation-
CMTrack80.7A Confidence-Aware Matching Strategy For Generalized Multi-Object Tracking
BoostTrack+80.6BoostTrack: boosting the similarity measure and detection confidence for improved multiple object tracking
STGT76.7TransMOT: Spatial-Temporal Graph Transformer for Multiple Object Tracking-
Deep OC-SORT79.4Deep OC-SORT: Multi-Pedestrian Tracking by Adaptive Re-Identification
TraDeS69.1Track to Detect and Segment: An Online Multi-Object Tracker-
BoT-SORT80.5BoT-SORT: Robust Associations Multi-Pedestrian Tracking
C-TWiX78.1Learning Data Association for Multi-Object Tracking using Only Coordinates
GTR75.3Global Tracking Transformers
QDTrack68.7Quasi-Dense Similarity Learning for Multiple Object Tracking
IMM-JHSE79.54One Homography is All You Need: IMM-based Joint Homography and Multiple Object State Estimation
DeepMOT-Tracktor53.7How To Train Your Deep Multi-Object Tracker
TrackFormer74.1TrackFormer: Multi-Object Tracking with Transformers
MOTR67.4MOTR: End-to-End Multiple-Object Tracking with Transformer
0 of 44 row(s) selected.