HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
Système
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Multi Label Image Classification
Multi Label Image Classification On
Multi Label Image Classification On
Métriques
mAP (micro)
official split
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mAP (micro)
official split
Paper Title
Repository
MoCo-v2 (ResNet18, fine tune)
89.3
No
Self-supervised Learning in Remote Sensing: A Review
ResNet50
-
-
In-domain representation learning for remote sensing
-
DINO-MC
88.75
No
Extending global-local view alignment for self-supervised learning with remote sensing imagery
ResNet50
-
Yes
Benchmarking and scaling of deep learning models for land cover image classification
MoCo-v3 (ViT-S/16, fine tune)
89.9
No
SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal Dataset for Self-Supervised Learning in Earth Observation
MAE (ViT-S/16, fine tune)
88.9
No
SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal Dataset for Self-Supervised Learning in Earth Observation
ViTM/20
-
Yes
Benchmarking and scaling of deep learning models for land cover image classification
WideResNet-B5-ECA
-
Yes
Benchmarking and scaling of deep learning models for land cover image classification
MoCo-v2 (ResNet50, fine tune)
91.8
No
SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal Dataset for Self-Supervised Learning in Earth Observation
MLPMixer
-
Yes
Benchmarking and scaling of deep learning models for land cover image classification
0 of 10 row(s) selected.
Previous
Next