Molecular Property Prediction On Hiv Dataset
Métriques
AUC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | AUC | Paper Title | Repository |
---|---|---|---|
GAL 30B | 0.759 | Galactica: A Large Language Model for Science | |
GAL 1.3B | 0.724 | Galactica: A Large Language Model for Science | |
ChemBFN | 0.794 | A Bayesian Flow Network Framework for Chemistry Tasks | |
SMA | 0.789 | Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning | |
DVMP | 0.810 | Dual-view Molecule Pre-training | |
GAL 125M | 0.702 | Galactica: A Large Language Model for Science | |
GAL 6.7B | 0.722 | Galactica: A Large Language Model for Science | |
Uni-Mol | 0.808 | Galactica: A Large Language Model for Science | |
ChemBERTa-2 Fine-tuned | 0.793 | ChemBERTa-2: Fine-Tuning for Molecule’s HIV Replication Inhibition Prediction | |
MolXPT | 0.781 | MolXPT: Wrapping Molecules with Text for Generative Pre-training | - |
GAL 120B | 0.745 | Galactica: A Large Language Model for Science |
0 of 11 row(s) selected.