HyperAI
HyperAI
Accueil
Actualités
Articles de recherche
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Rechercher sur le site...
⌘
K
Accueil
SOTA
Prédiction des propriétés moléculaires
Molecular Property Prediction On Freesolv
Molecular Property Prediction On Freesolv
Métriques
R2
RMSE
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
R2
RMSE
Paper Title
Repository
GIN
0.964±0.008
0.744±0.083
How Powerful are Graph Neural Networks?
GROVER (large)
-
2.272
Self-Supervised Graph Transformer on Large-Scale Molecular Data
S-CGIB
-
1.648±0.074
Pre-training Graph Neural Networks on Molecules by Using Subgraph-Conditioned Graph Information Bottleneck
-
N-GramRF
-
2.688
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
Uni-Mol
-
1.620
Uni-Mol: A Universal 3D Molecular Representation Learning Framework
-
N-GramXGB
-
5.061
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
ChemRL-GEM
-
1.877
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for Property Prediction
-
DropGIN
0.972±0.005
0.657±0.059
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
SMA
-
1.09
Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning
PNA
0.951±0.009
0.870±0.081
Principal Neighbourhood Aggregation for Graph Nets
ChemBFN
-
1.418
A Bayesian Flow Network Framework for Chemistry Tasks
TokenGT
0.930±0.018
1.038±0.125
Pure Transformers are Powerful Graph Learners
ESA (Edge set attention, no positional encodings)
0.977±0.001
0.595±0.013
An end-to-end attention-based approach for learning on graphs
PretrainGNN
-
2.764
Strategies for Pre-training Graph Neural Networks
GAT
0.959±0.011
0.791±0.101
Graph Attention Networks
Graphormer
0.927±0.005
1.065±0.039
Do Transformers Really Perform Bad for Graph Representation?
D-MPNN
-
2.082
Analyzing Learned Molecular Representations for Property Prediction
GraphGPS
0.861±0.037
1.462±0.188
Recipe for a General, Powerful, Scalable Graph Transformer
GCN
0.957±0.009
0.815±0.086
Semi-Supervised Classification with Graph Convolutional Networks
GATv2
0.970±0.007
0.676±0.081
How Attentive are Graph Attention Networks?
0 of 22 row(s) selected.
Previous
Next