HyperAI

Molecular Property Prediction On Esol

Métriques

R2
RMSE

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleR2RMSE
graph-attention-networks0.930±0.0070.540±0.027
chemrl-gem-geometry-enhanced-molecular-0.798
do-transformers-really-perform-bad-for-graph0.908±0.0210.618±0.068
moleculenet-a-benchmark-for-molecular-machine-0.99
how-powerful-are-graph-neural-networks0.938±0.0110.509±0.044
are-learned-molecular-representations-ready-1.050
moleculenet-a-benchmark-for-molecular-machine-0.58
semi-supervised-classification-with-graph0.936±0.0060.520±0.024
how-attentive-are-graph-attention-networks0.928±0.0050.549±0.020
pre-training-graph-neural-networks-on-0.816±0.019
principal-neighbourhood-aggregation-for-graph0.942±0.0060.493±0.026
a-bayesian-flow-network-framework-for-0.884
dropgnn-random-dropouts-increase-the0.935±0.0120.520±0.048
molecular-structure-property-co-trained-0.810
uni-mol-a-universal-3d-molecular-0.788
self-guided-masked-autoencoders-for-domain-0.623
chemberta-2-towards-chemical-foundation-0.889
pure-transformers-are-powerful-graph-learners0.892±0.0360.667±0.103
recipe-for-a-general-powerful-scalable-graph0.911±0.0030.613±0.010
masked-attention-is-all-you-need-for-graphs0.944±0.0020.485±0.009