HyperAI

Medical Image Segmentation On Synapse Multi

Métriques

Avg DSC
Avg HD

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAvg DSCAvg HD
agileformer-spatially-agile-transformer-unet86.1112.88
rethinking-attention-gated-with-hybrid-dual83.4315.82
nnformer-interleaved-transformer-for86.5710.63
medsegdiff-v2-diffusion-based-medical-image89.50-
nnu-net-self-adapting-framework-for-u-net88.8010.78
rethinking-semantic-segmentation-from-a79.60-
paratranscnn-parallelized-transcnn-encoder83.8615.86
emcad-efficient-multi-scale-convolutional83.6315.68
uctransnet-rethinking-the-skip-connections-in78.9930.29
ai-sam-automatic-and-interactive-segment90.66-
segformer3d-an-efficient-transformer-for-3d82.15-
s2s2-semantic-stacking-for-robust-semantic81.19-
multi-scale-hierarchical-vision-transformer-184.9013.22
transunet-transformers-make-strong-encoders77.4831.69
medical-sam-adapter-adapting-segment-anything89.80-
mist-medical-image-segmentation-transformer86.9211.07
ai-sam-automatic-and-interactive-segment84.21-
missformer-an-effective-medical-image81.9618.20
mednext-transformer-driven-scaling-of88.76-
adaptive-t-vmf-dice-loss-for-multi-class80.26-
selfreg-unet-self-regularized-unet-for80.54-
swin-unet-unet-like-pure-transformer-for79.1321.55
selfreg-unet-self-regularized-unet-for80.34-