Medical Image Segmentation On Medical
Métriques
Dice (Average)
NSD
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Dice (Average) | NSD | Paper Title | Repository |
---|---|---|---|---|
DiNTS | 77.93 | 88.68 | DiNTS: Differentiable Neural Network Topology Search for 3D Medical Image Segmentation | |
Swin UNETR | 78.68 | 89.28 | Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis | |
nnUNet | 77.89 | 88.09 | nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation | |
Models Genesis | 76.97 | 87.19 | Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis | |
Trans VW | 76.96 | 87.64 | Transferable Visual Words: Exploiting the Semantics of Anatomical Patterns for Self-supervised Learning |
0 of 5 row(s) selected.