HyperAI

Medical Image Segmentation On Kvasir Seg

Métriques

Average MAE
mean Dice

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Average MAE
mean Dice
Paper TitleRepository
FANet0.81530.8803FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation
ResUNet++ + TTA + CRF-0.8508A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation
RUPNet-0.7658RUPNet: Residual upsampling network for real-time polyp segmentation-
TGA-Net-0.8982TGANet: Text-guided attention for improved polyp segmentation
ESFPNet-L-0.931ESFPNet: efficient deep learning architecture for real-time lesion segmentation in autofluorescence bronchoscopic video
TransNetR-0.8706TransNetR: Transformer-based Residual Network for Polyp Segmentation with Multi-Center Out-of-Distribution Testing
ColonSegNet-0.8206Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning
COMMA (ResNet-50)0.0240.904COMMA: Propagating Complementary Multi-Level Aggregation Network for Polyp Segmentation-
EffiSegNet-B4-0.9483EffiSegNet: Gastrointestinal Polyp Segmentation through a Pre-Trained EfficientNet-based Network with a Simplified Decoder-
HarDNet-DFUS-0.9363HarDNet-DFUS: An Enhanced Harmonically-Connected Network for Diabetic Foot Ulcer Image Segmentation and Colonoscopy Polyp Segmentation
DoubleUnet-DCA-0.8516Dual Cross-Attention for Medical Image Segmentation
MEGANet(ResNet-34)0.0260.911MEGANet: Multi-Scale Edge-Guided Attention Network for Weak Boundary Polyp Segmentation
HarDNet-MSEG0.0250.912HarDNet-MSEG: A Simple Encoder-Decoder Polyp Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS
UACANet-S0.0260.905UACANet: Uncertainty Augmented Context Attention for Polyp Segmentation
AG-CUResNeSt-0.902AG-CUResNeSt: A Novel Method for Colon Polyp Segmentation
SEP-0.9411Spatially Exclusive Pasting: A General Data Augmentation for the Polyp Segmentation-
COMMA (Res2Net-50)0.0270.901COMMA: Propagating Complementary Multi-Level Aggregation Network for Polyp Segmentation-
RAPUNet-0.939MetaFormer and CNN Hybrid Model for Polyp Image Segmentation
MSRF-Net-0.9217MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation
EMCAD-0.928EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation
0 of 56 row(s) selected.