HyperAI

Medical Image Segmentation On Automatic

Métriques

Avg DSC

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAvg DSC
transunet-transformers-make-strong-encoders87.57
g-cascade-efficient-cascaded-graph92.23
lhu-net-a-light-hybrid-u-net-for-cost92.65
medical-image-segmentation-via-cascaded91.63
g-cascade-efficient-cascaded-graph91.95
swin-unet-unet-like-pure-transformer-for90.00
nnformer-interleaved-transformer-for92.06
the-fully-convolutional-transformer-for93.02
ai-sam-automatic-and-interactive-segment93.89
transunet-transformers-make-strong-encoders86.75
ai-sam-automatic-and-interactive-segment92.06
s2s2-semantic-stacking-for-robust-semantic90.4
adaptive-t-vmf-dice-loss-for-multi-class94.26
transunet-transformers-make-strong-encoders89.71
mist-medical-image-segmentation-transformer92.56
multi-scale-hierarchical-vision-transformer-192.32
emcad-efficient-multi-scale-convolutional92.12
segformer3d-an-efficient-transformer-for-3d90.96
missformer-an-effective-medical-image87.9
medical-image-segmentation-via-cascaded91.46