HyperAI

Medical Code Prediction On Mimic Iii

Métriques

Macro-AUC
Macro-F1
Micro-AUC
Micro-F1
Precision@15
Precision@8

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleMacro-AUCMacro-F1Micro-AUCMicro-F1Precision@15Precision@8
explainable-prediction-of-medical-codes-from89.78.698.552.954.869.0
code-synonyms-do-matter-multiple-synonyms-195.010.399.258.459.975.2
explainable-prediction-of-medical-codes-from82.23.897.141.744.558.5
explainable-automated-coding-of-clinical88.53.698.140.7-61.4
explainable-prediction-of-medical-codes-from56.11.193.727.241.154.2
icd-coding-from-clinical-text-using-multi91.08.598.655.258.473.4
a-label-attention-model-for-icd-coding-from91.99.998.857.559.173.8
Modèle 891.09.099.255.358.172.8
read-attend-and-code-pushing-the-limits-of94.812.799.258.660.175.4
explainable-prediction-of-medical-codes-from---44.1--
explainable-prediction-of-medical-codes-from80.64.296.941.944.358.1
explainable-prediction-of-medical-codes-from89.58.898.653.956.170.9
knowledge-injected-prompt-based-fine-tuning-11.8-59.961.577.1
automatic-icd-coding-exploiting-discourse95.614.099.358.861.476.5
a-label-attention-model-for-icd-coding-from92.110.798.857.559.073.5
an-unsupervised-approach-to-achieve-24.7-60.0--
effective-convolutional-attention-network-for91.510.698.858.960.675.8