Malware Classification On Malimg Dataset
Métriques
Accuracy (10-fold)
Macro F1 (10-fold)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Accuracy (10-fold) | Macro F1 (10-fold) | Paper Title | Repository |
---|---|---|---|---|
Gray-scale IMG CNN | 0.9848 | 0.9580 | Using Convolutional Neural Networks for Classification of Malware represented as Images | |
GA Designed Deep CNN | - | - | Designing Deep Convolutional Neural Networks using a Genetic Algorithm for Image-based Malware Classification | - |
GRU + SVM | - | - | Towards Building an Intelligent Anti-Malware System: A Deep Learning Approach using Support Vector Machine (SVM) for Malware Classification | |
CNN + SVM | - | - | Towards Building an Intelligent Anti-Malware System: A Deep Learning Approach using Support Vector Machine (SVM) for Malware Classification | |
FFNN + SVM | - | - | Towards Building an Intelligent Anti-Malware System: A Deep Learning Approach using Support Vector Machine (SVM) for Malware Classification |
0 of 5 row(s) selected.