HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Machine Translation
Machine Translation On Wmt2014 German English
Machine Translation On Wmt2014 German English
Métriques
BLEU score
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
BLEU score
Paper Title
Repository
CMLM+LAT+1 iterations
29.91
Incorporating a Local Translation Mechanism into Non-autoregressive Translation
-
SimCut
34.86
Bi-SimCut: A Simple Strategy for Boosting Neural Machine Translation
CNAT
30.75
Non-Autoregressive Translation by Learning Target Categorical Codes
BiBERT
34.94
BERT, mBERT, or BiBERT? A Study on Contextualized Embeddings for Neural Machine Translation
Denoising autoencoders (non-autoregressive)
25.43
Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement
NAT +FT + NPD
23.20
Non-Autoregressive Neural Machine Translation
FlowSeq-large (NPD n = 15)
27.71
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
Mega
33.12
Mega: Moving Average Equipped Gated Attention
SMT + iterative backtranslation (unsupervised)
17.43
Unsupervised Statistical Machine Translation
FlowSeq-large
25.4
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
Bi-SimCut
35.15
Bi-SimCut: A Simple Strategy for Boosting Neural Machine Translation
FlowSeq-base
23.36
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
MAT+Knee
31.9
Wide-minima Density Hypothesis and the Explore-Exploit Learning Rate Schedule
CMLM+LAT+4 iterations
32.04
Incorporating a Local Translation Mechanism into Non-autoregressive Translation
-
FlowSeq-large (IWD n=15)
27.16
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
FlowSeq-large (NPD n = 30)
28.29
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
0 of 16 row(s) selected.
Previous
Next