HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Apprentissage à queue longue
Long Tail Learning On Coco Mlt
Long Tail Learning On Coco Mlt
Métriques
Average mAP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Average mAP
Paper Title
Repository
DB Focal(ResNet-50)
53.55
Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets
-
PG Loss(ResNet-50)
54.43
Probability Guided Loss for Long-Tailed Multi-Label Image Classification
-
LDAM(ResNet-50)
40.53
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
-
RS(ResNet-50)
46.97
Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
-
ML-GCN(ResNet-50)
44.24
Multi-Label Image Recognition with Graph Convolutional Networks
-
Focal Loss(ResNet-50)
49.46
Focal Loss for Dense Object Detection
-
LMPT(ResNet-50)
58.97
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
-
OLTR(ResNet-50)
45.83
Large-Scale Long-Tailed Recognition in an Open World
-
LTML(ResNet-50)
56.90
Long-Tailed Multi-Label Visual Recognition by Collaborative Training on Uniform and Re-Balanced Samplings
-
CB Loss(ResNet-50)
49.06
Class-Balanced Loss Based on Effective Number of Samples
-
CLIP(ViT-B/16)
60.17
Learning Transferable Visual Models From Natural Language Supervision
-
CLIP(ResNet-50)
56.19
Learning Transferable Visual Models From Natural Language Supervision
-
LMPT(ViT-B/16)
66.19
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
-
0 of 13 row(s) selected.
Previous
Next
Long Tail Learning On Coco Mlt | SOTA | HyperAI