Command Palette
Search for a command to run...
Liver Segmentation On Lits2017
Métriques
Dice
HD
IoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
| Paper Title | ||||
|---|---|---|---|---|
| H-DenseUnet Liver | 96.5 | - | - | H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes |
| KiU-Net 3D | 94.23 | - | - | KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation |
| U-Net LiS (MICCAI 17) | 94 | - | - | Liver Lesion Segmentation with slice-wise 2D Tiramisu and Tversky loss function |
| Polar U-Net | 93.02 | - | 89.85 | Training on Polar Image Transformations Improves Biomedical Image Segmentation |
| Semantic Genesis | 92.27 | - | 85.6 | Learning Semantics-enriched Representation via Self-discovery, Self-classification, and Self-restoration |
| ModelGenesis | 91.13 | - | 79.52 | Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis |
| PVTFormer | 86.78 | 3.50 | 78.46 | CT Liver Segmentation via PVT-based Encoding and Refined Decoding |
| H-DenseUnet Lession | 82.4 | - | - | H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes |
| KiU-Net 3D Liver | - | - | 89.46 | KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation |
0 of 9 row(s) selected.