HyperAI

Link Property Prediction On Ogbl Citation2

Métriques

Ext. data
Number of params
Test MRR
Validation MRR

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleExt. dataNumber of paramsTest MRRValidation MRR
can-gnns-learn-link-heuristics-a-conciseNo3726740.8891 ± 0.00050.8892 ± 0.0005
open-graph-benchmark-datasets-for-machineNo2811135050.5186 ± 0.04430.5181 ± 0.0436
Modèle 3No00.5147 ± 0.00000.5119 ± 0.0000
graphgpt-graph-learning-with-generative-preNo467841280.9055 ± 0.00160.9042 ± 0.0014
inductive-representation-learning-on-largeNo4602890.8044 ± 0.00100.8054 ± 0.0009
inductive-representation-learning-on-largeNo4602890.8260 ± 0.00360.8263 ± 0.0033
adaptive-graph-diffusion-networks-with-hopNo3067160.8549 ± 0.00290.8556 ± 0.0033
network-in-graph-neural-networkNo11344020.8891 ± 0.00220.8879 ± 0.0022
node2vec-scalable-feature-learning-forNo3749111050.6141 ± 0.00110.6124 ± 0.0011
circle-feature-graphormer-can-circle-featuresNo6862530.8997 ± 0.00150.8987 ± 0.0011
algorithm-and-system-co-design-for-efficientNo796170.8883 ± 0.00180.8891 ± 0.0021
pure-message-passing-can-estimate-commonNo7497572830.9072 ± 0.00120.9074 ± 0.0011
simplifying-subgraph-representation-learningNo1422750010.8814 ± 0.00080.8809 ± 0.0074
graphgpt-graph-learning-with-generative-preNo1330968320.9305 ± 0.00200.9295 ± 0.0022
graphsaint-graph-sampling-based-inductiveNo2964490.7985 ± 0.00400.7975 ± 0.0039
Modèle 16No7495585280.8432 ± 0.00030.8422 ± 0.0002
semi-supervised-classification-with-graphNo2964490.8474 ± 0.00210.8479 ± 0.0023
cluster-gcn-an-efficient-algorithm-forNo2964490.8004 ± 0.00250.7994 ± 0.0025
Modèle 19No2568020.8957 ± 0.00100.8948 ± 0.0008
Modèle 20No00.5189 ± 0.00000.5167 ± 0.0000
pairwise-learning-for-neural-link-predictionNo1465145510.8492 ± 0.00290.8490 ± 0.0031
Modèle 22No1665310.8796 ± 0.00080.8793 ± 0.0008
revisiting-graph-neural-networks-for-link-1No2608020.8767 ± 0.00320.8757 ± 0.0031