Link Prediction On Fb15K
Métriques
Hits@10
MRR
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Hits@10 | MRR |
---|---|---|
augmenting-and-tuning-knowledge-graph | 0.914 | 0.841 |
adaptive-convolution-for-multi-relational | 0.887 | 0.782 |
tucker-tensor-factorization-for-knowledge | 0.892 | 0.795 |
logicenn-a-neural-based-knowledge-graphs | 0.874 | 0.766 |
Modèle 5 | 0.842 | 0.696 |
seek-segmented-embedding-of-knowledge-graphs | 0.886 | 0.825 |
quaternion-knowledge-graph-embedding | 0.900 | 0.833 |
knowledge-graph-completion-via-complex-tensor | 0.840 | 0.692 |
representation-learning-with-ordered-relation | 0.899 | - |
rotate-knowledge-graph-embedding-by | 0.884 | 0.799 |
convolutional-2d-knowledge-graph-embeddings | 0.831 | 0.657 |
hypernetwork-knowledge-graph-embeddings | 0.885 | 0.790 |
graphvite-a-high-performance-cpu-gpu-hybrid | 0.876 | 0.779 |
simple-embedding-for-link-prediction-in | 0.838 | 0.727 |
augmenting-compositional-models-for-knowledge | .901 | .796 |
autokge-searching-scoring-functions-for | 0.914 | 0.861 |
multi-partition-embedding-interaction-with | 0.893 | 0.806 |
nscaching-simple-and-efficient-negative | - | 0.7721 |
rotate-knowledge-graph-embedding-by | 0.884 | 0.797 |
convolutional-2d-knowledge-graph-embeddings | 0.660 | 0.660 |
knowledge-graph-embedding-via-dynamic-mapping | 0.773 | - |
using-pairwise-occurrence-information-to | 0.883 | 0.761 |
translating-embeddings-for-modeling-multi | 0.471 | - |