HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Acceptabilité linguistique
Linguistic Acceptability On Cola
Linguistic Acceptability On Cola
Métriques
Accuracy
MCC
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
MCC
Paper Title
Repository
BERT+TDA
88.2%
0.726
Can BERT eat RuCoLA? Topological Data Analysis to Explain
-
RoBERTa (ensemble)
67.8%
-
RoBERTa: A Robustly Optimized BERT Pretraining Approach
-
T5-Base
51.1%
-
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
-
LTG-BERT-base 98M
82.7
-
Not all layers are equally as important: Every Layer Counts BERT
-
En-BERT + TDA
82.1%
0.565
Acceptability Judgements via Examining the Topology of Attention Maps
-
RemBERT
-
0.6
RuCoLA: Russian Corpus of Linguistic Acceptability
-
24hBERT
57.1
-
How to Train BERT with an Academic Budget
-
MLM+ del-span+ reorder
64.3%
-
CLEAR: Contrastive Learning for Sentence Representation
-
ELECTRA
68.2%
-
-
-
ERNIE 2.0 Large
63.5%
-
ERNIE 2.0: A Continual Pre-training Framework for Language Understanding
-
deberta-v3-base+tasksource
87.15%
-
tasksource: A Dataset Harmonization Framework for Streamlined NLP Multi-Task Learning and Evaluation
-
SqueezeBERT
46.5%
-
SqueezeBERT: What can computer vision teach NLP about efficient neural networks?
-
T5-XL 3B
67.1%
-
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
-
FLOATER-large
69%
-
Learning to Encode Position for Transformer with Continuous Dynamical Model
-
LM-CPPF RoBERTa-base
14.1%
-
LM-CPPF: Paraphrasing-Guided Data Augmentation for Contrastive Prompt-Based Few-Shot Fine-Tuning
-
StructBERTRoBERTa ensemble
69.2%
-
StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding
-
data2vec
60.3%
-
data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language
-
ERNIE
52.3%
-
ERNIE: Enhanced Language Representation with Informative Entities
-
Q8BERT (Zafrir et al., 2019)
65.0
-
Q8BERT: Quantized 8Bit BERT
-
T5-Small
41.0%
-
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
-
0 of 43 row(s) selected.
Previous
Next
Linguistic Acceptability On Cola | SOTA | HyperAI