HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Lidar Semantic Segmentation
Lidar Semantic Segmentation On Paris Lille 3D
Lidar Semantic Segmentation On Paris Lille 3D
Métriques
mIOU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mIOU
Paper Title
Repository
ConvPoint
0.759
ConvPoint: Continuous Convolutions for Point Cloud Processing
GeomGCNN
0.785
Exploiting Local Geometry for Feature and Graph Construction for Better 3D Point Cloud Processing with Graph Neural Networks
-
Feature Geometric Net (FG Net)
0.819
FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated Feature Mining and Geometric-Aware Modelling
Paris-Lille-3D
0.31
Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification
-
ConvPoint_Keras
0.720
ConvPoint: Continuous Convolutions for Point Cloud Processing
FKAConv
0.827
FKAConv: Feature-Kernel Alignment for Point Cloud Convolution
DA-supervised
0.638
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
KPConv deform
0.759
KPConv: Flexible and Deformable Convolution for Point Clouds
CLOUDSPAM
0.738
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
0 of 9 row(s) selected.
Previous
Next