HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
Système
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Learning With Noisy Labels
Learning With Noisy Labels On Cifar 10N 3
Learning With Noisy Labels On Cifar 10N 3
Métriques
Accuracy (mean)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy (mean)
Paper Title
Repository
GCE
87.58
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
F-div
89.55
When Optimizing $f$-divergence is Robust with Label Noise
CAL
90.74
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Backward-T
86.86
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
CORES
89.79
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
JoCoR
90.11
Combating noisy labels by agreement: A joint training method with co-regularization
Positive-LS
89.82
Does label smoothing mitigate label noise?
-
ELR
91.41
Early-Learning Regularization Prevents Memorization of Noisy Labels
VolMinNet
88.19
Provably End-to-end Label-Noise Learning without Anchor Points
SOP+
95.39
Robust Training under Label Noise by Over-parameterization
Co-Teaching
90.15
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Co-Teaching+
89.54
How does Disagreement Help Generalization against Label Corruption?
Forward-T
87.04
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
PSSCL
96.49
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
GNL
91.83
Partial Label Supervision for Agnostic Generative Noisy Label Learning
CORES*
94.74
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
ILL
95.13
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
CE
85.16
-
-
Negative-LS
90.13
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Peer Loss
88.57
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
0 of 23 row(s) selected.
Previous
Next