HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Apprentissage avec étiquettes bruitées
Learning With Noisy Labels On Cifar 100N
Learning With Noisy Labels On Cifar 100N
Métriques
Accuracy (mean)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy (mean)
Paper Title
Repository
Peer Loss
57.59
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
-
ILL
65.84
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
-
F-div
57.10
When Optimizing $f$-divergence is Robust with Label Noise
-
PGDF
74.08
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
-
T-Revision
51.55
Are Anchor Points Really Indispensable in Label-Noise Learning?
-
VolMinNet
57.80
Provably End-to-end Label-Noise Learning without Anchor Points
-
CE
55.50
-
-
Backward-T
57.14
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
-
Co-Teaching
60.37
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
-
Positive-LS
55.84
Does label smoothing mitigate label noise?
-
CAL
61.73
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
-
ELR+
66.72
Early-Learning Regularization Prevents Memorization of Noisy Labels
-
Divide-Mix
71.13
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
-
Negative-LS
58.59
To Smooth or Not? When Label Smoothing Meets Noisy Labels
-
CORES*
55.72
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
-
ELR
58.94
Early-Learning Regularization Prevents Memorization of Noisy Labels
-
Forward-T
57.01
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
-
JoCoR
59.97
Combating noisy labels by agreement: A joint training method with co-regularization
-
CORES
61.15
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
-
GCE
56.73
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
-
0 of 24 row(s) selected.
Previous
Next
Learning With Noisy Labels On Cifar 100N | SOTA | HyperAI