HyperAI

Language Modelling On Penn Treebank Character

Métriques

Bit per Character (BPC)
Number of params

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleBit per Character (BPC)Number of params
seq-u-net-a-one-dimensional-causal-u-net-for1.315.9M
improved-language-modeling-by-decoding-the1.16913.8M
hypernetworks1.21914.4M
accessing-higher-level-representations-in1.16010.7M
mogrifier-lstm1.08324M
recurrent-highway-networks-with-grouped1.14716.0M
mogrifier-lstm1.12024M
seq-u-net-a-one-dimensional-causal-u-net-for1.35.9M
trellis-networks-for-sequence-modeling1.15813.4M
r-transformer-recurrent-neural-network1.24-
an-analysis-of-neural-language-modeling-at1.18713.8M
independently-recurrent-neural-network-indrnn1.19-
deep-independently-recurrent-neural-network1.18-
an-empirical-evaluation-of-generic1.31-
neural-architecture-search-with-reinforcement1.21416.3M
fast-slow-recurrent-neural-networks1.19027M
discrete-flows-invertible-generative-models1.38-
gating-revisited-deep-multi-layer-rnns-that-11.30-
an-analysis-of-neural-language-modeling-at1.17513.8M
fast-slow-recurrent-neural-networks1.19327M