HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Détection de points clés
Keypoint Detection On Coco Test Dev
Keypoint Detection On Coco Test Dev
Métriques
AP
APL
APM
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AP
APL
APM
Paper Title
Repository
OpenPifPaf
70.9
76.8
67.1
OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association
-
G-RMI
-
70.0
62.3
Towards Accurate Multi-person Pose Estimation in the Wild
-
Simple Base
-
80.0
70.3
Simple Baselines for Human Pose Estimation and Tracking
-
CPN
-
77.2
68.7
Cascaded Pyramid Network for Multi-Person Pose Estimation
-
HRNet
-
81.5
71.9
Deep High-Resolution Representation Learning for Human Pose Estimation
-
Mask R-CNN
-
71.4
57.8
Mask R-CNN
-
AlphaPose
-
81.5
-
RMPE: Regional Multi-person Pose Estimation
-
Simple Pose
68.1
70.5
66.8
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
-
DirectPose (ResNet-101)
64.8
71.5
60.4
DirectPose: Direct End-to-End Multi-Person Pose Estimation
-
Simple Base+*
-
82.7
73.0
Simple Baselines for Human Pose Estimation and Tracking
-
CPN+
-
78.1
69.5
Cascaded Pyramid Network for Multi-Person Pose Estimation
-
MSPN
76.1
81.5
72.3
Rethinking on Multi-Stage Networks for Human Pose Estimation
-
CMU Pose
-
68.2
57.1
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
-
HRNet*
-
83.1
73.4
Deep High-Resolution Representation Learning for Human Pose Estimation
-
AE
-
72.6
60.6
Associative Embedding: End-to-End Learning for Joint Detection and Grouping
-
PifPaf (single-scale)
66.4
72.1
62.6
PifPaf: Composite Fields for Human Pose Estimation
-
0 of 16 row(s) selected.
Previous
Next
Keypoint Detection On Coco Test Dev | SOTA | HyperAI