HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Intent Detection
Intent Detection On Mixsnips
Intent Detection On Mixsnips
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
GL-GIN
95.6
GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling
DGIF
97.8
A Dynamic Graph Interactive Framework with Label-Semantic Injection for Spoken Language Understanding
-
SLIM
97.2
SLIM: Explicit Slot-Intent Mapping with BERT for Joint Multi-Intent Detection and Slot Filling
RoBERTa (PACL)
96.5
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
AGIF
96.5
AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling
Co-guiding Net
97.7
Co-guiding Net: Achieving Mutual Guidances between Multiple Intent Detection and Slot Filling via Heterogeneous Semantics-Label Graphs
BiSLU
97.8
Joint Multiple Intent Detection and Slot Filling with Supervised Contrastive Learning and Self-Distillation
SSRAN
98.4
A Scope Sensitive and Result Attentive Model for Multi-Intent Spoken Language Understanding
-
SLIM (PACL)
96.9
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
Global Intent-Slot Co-occurence
95.5
Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-occurrence
Uni-MIS
97.2
Uni-MIS: United Multiple Intent Spoken Language Understanding via Multi-View Intent-Slot Interaction
MISCA
97.3
MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention
Topic Information
96.3
Exploiting Topic Information for Joint Intent Detection and Slot Filling
-
TFMN (PACL)
97.4
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
UGEN
96.9
Incorporating Instructional Prompts into a Unified Generative Framework for Joint Multiple Intent Detection and Slot Filling
TFMN
97.7
A Transformer-based Threshold-Free Framework for Multi-Intent NLU
-
0 of 16 row(s) selected.
Previous
Next