HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Intent Detection
Intent Detection On Mixatis
Intent Detection On Mixatis
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
TFMN (PACL)
82.9
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
RoBERTa (PACL)
79.1
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
DGIF
83.3
A Dynamic Graph Interactive Framework with Label-Semantic Injection for Spoken Language Understanding
-
Co-guiding Net
79.1
Co-guiding Net: Achieving Mutual Guidances between Multiple Intent Detection and Slot Filling via Heterogeneous Semantics-Label Graphs
SLIM
78.3
SLIM: Explicit Slot-Intent Mapping with BERT for Joint Multi-Intent Detection and Slot Filling
GL-GIN
76.3
GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and Slot Filling
TFMN
79.8
A Transformer-based Threshold-Free Framework for Multi-Intent NLU
-
Global Intent-Slot Co-occurence
75.0
Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-occurrence
UGEN
83.0
Incorporating Instructional Prompts into a Unified Generative Framework for Joint Multiple Intent Detection and Slot Filling
Uni-MIS
78.5
Uni-MIS: United Multiple Intent Spoken Language Understanding via Multi-View Intent-Slot Interaction
MISCA
76.7
MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with Intent-Slot Co-Attention
Topic Information
73.0
Exploiting Topic Information for Joint Intent Detection and Slot Filling
-
SLIM (PACL)
81.9
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
-
SSRAN
77.9
A Scope Sensitive and Result Attentive Model for Multi-Intent Spoken Language Understanding
-
BiSLU
81.5
Joint Multiple Intent Detection and Slot Filling with Supervised Contrastive Learning and Self-Distillation
0 of 15 row(s) selected.
Previous
Next