Image To Image Translation On Gtav To
Métriques
mIoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | mIoU |
---|---|
class-balanced-pixel-level-self-labeling-for | 60.8 |
g2l-a-global-to-local-alignment-method-for | 59.7 |
context-aware-mixup-for-domain-adaptive | 55.2 |
content-consistent-matching-for-domain | 49.9 |
context-aware-mixup-for-domain-adaptive | 70.0 |
advent-adversarial-entropy-minimization-for | 44.8 |
deliberated-domain-bridging-for-domain | 62.7 |
unsupervised-domain-adaptation-for-semantic | 47.0 |
very-deep-convolutional-networks-for-large | 41.3 |
sepico-semantic-guided-pixel-contrast-for | 70.3 |
cross-region-domain-adaptation-for-class | 58.6 |
pipa-pixel-and-patch-wise-self-supervised | 71.7 |
deep-residual-learning-for-image-recognition | 41.7 |
procst-boosting-semantic-segmentation-using | 69.4 |
exploring-high-quality-target-domain | 62.0 |
prototypical-pseudo-label-denoising-and | 57.5 |
pipa-pixel-and-patch-wise-self-supervised | 75.6 |
bidirectional-learning-for-domain-adaptation | 41.3 |
hrda-context-aware-high-resolution-domain | 73.8 |
daformer-improving-network-architectures-and | 68.3 |
mic-masked-image-consistency-for-context | 75.9 |
smoothing-matters-momentum-transformer-for | 63.9 |