HyperAI

Image To Image Translation On Cityscapes

Métriques

FID
Per-pixel Accuracy
mIoU

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleFIDPer-pixel AccuracymIoU
semi-parametric-image-synthesis49.775.5%47.2
wavelet-based-unsupervised-label-to-image-150.14-42.32
semantic-image-synthesis-with-spatially71.881.9%62.3
diverse-semantic-image-synthesis-via---
usis-unsupervised-semantic-image-synthesis53.67-44.78
image-to-image-translation-with-conditional-71.0-
improving-augmentation-and-evaluation-schemes52.1-63.1
sesame-semantic-editing-of-scenes-by-adding54.282.5%66
unlocking-pre-trained-image-backbones-for38.2-76.3
high-resolution-image-synthesis-and-semantic9581.4%58.3
you-only-need-adversarial-supervision-for-147.7-69.3
adversarially-learned-inference-19%-
coupled-generative-adversarial-networks-40%-
photographic-image-synthesis-with-cascaded104.777.1%52.4
semantic-bottleneck-scene-generation60.39--
dual-pyramid-generative-adversarial-networks44.1-73.6
learning-from-simulated-and-unsupervised-20%-
learning-to-predict-layout-to-image54.382.3%65.5
improving-augmentation-and-evaluation-schemes72.7-58
focal-frequency-loss-for-generative-models59.582.5%64.2
unpaired-image-to-image-translation-using-52%-