Image Super Resolution On Set5 3X Upscaling
Métriques
PSNR
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | PSNR |
---|---|
lightweight-image-super-resolution-with-1 | 34.36 |
feedback-network-for-image-super-resolution | 34.70 |
hmanet-hybrid-multi-axis-aggregation-network | 35.35 |
drct-saving-image-super-resolution-away-from | 35.18 |
lightweight-feature-fusion-network-for-single | 34.04 |
lcscnet-linear-compressing-based-skip | 33.99 |
learning-deep-cnn-denoiser-prior-for-image | 31.26 |
image-super-resolution-with-cross-scale-non | 34.74 |
hierarchical-information-flow-for-generalized | 35.2 |
ml-craist-multi-scale-low-high-frequency | 34.7 |
modulating-image-restoration-with-continual | 34.34 |
feature-based-adaptive-contrastive | 34.729 |
swinfir-revisiting-the-swinir-with-fast | 35.21 |
drct-saving-image-super-resolution-away-from | 35.32 |
beyond-a-gaussian-denoiser-residual-learning | 33.75 |
swinfir-revisiting-the-swinir-with-fast | 35.15 |
progressive-multi-scale-residual-network-for | 34.65 |
activating-more-pixels-in-image-super | 35.16 |
image-restoration-using-convolutional-auto | 33.82 |
multi-level-wavelet-cnn-for-image-restoration | 34.17 |
densely-residual-laplacian-super-resolution | 34.86 |
ml-craist-multi-scale-low-high-frequency | 34.58 |
channel-partitioned-windowed-attention-and | 35.16 |
local-texture-estimator-for-implicit | 34.89 |
one-size-fits-all-hypernetwork-for-tunable | 29.77 |
channel-partitioned-windowed-attention-and | 35.19 |
image-restoration-using-deep-regulated | 33.43 |
single-image-super-resolution-via-a-holistic | 34.85 |
a-framework-for-real-time-object-detection | 34.69 |
activating-more-pixels-in-image-super | 35.28 |
on-efficient-transformer-and-image-pre | 35.13 |
neural-nearest-neighbors-networks | 33.84 |