Image Super Resolution On Set14 3X Upscaling
Métriques
PSNR
SSIM
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | PSNR | SSIM |
---|---|---|
hmanet-hybrid-multi-axis-aggregation-network | 31.47 | 0.8585 |
hierarchical-information-flow-for-generalized | 31.55 | 0.8616 |
activating-more-pixels-in-image-super | 31.33 | 0.8576 |
single-image-super-resolution-via-a-holistic | 30.79 | 0.8487 |
a-framework-for-real-time-object-detection | 30.65 | 0.8493 |
swinfir-revisiting-the-swinir-with-fast | 31.24 | 0.8566 |
image-super-resolution-with-cross-scale-non | 30.66 | 0.8482 |
ml-craist-multi-scale-low-high-frequency | 30.39 | 0.8488 |
activating-more-pixels-in-image-super | 31.47 | 0.8584 |
local-texture-estimator-for-implicit | 30.8 | - |
channel-partitioned-windowed-attention-and | 31.15 | 0.8557 |
image-restoration-using-convolutional-auto | 29.61 | 0.8341 |
channel-partitioned-windowed-attention-and | 31.19 | 0.8559 |
lcscnet-linear-compressing-based-skip | 29.87 | - |
feedback-network-for-image-super-resolution | 30.1 | - |
learning-deep-cnn-denoiser-prior-for-image | 27.72 | - |
progressive-multi-scale-residual-network-for | 29.24 | 0.8087 |
swinfir-revisiting-the-swinir-with-fast | 31.37 | - |
pre-trained-image-processing-transformer | 30.85 | - |
multi-level-wavelet-cnn-for-image-restoration | 30.16 | - |
lightweight-image-super-resolution-with-1 | 30.32 | - |
densely-residual-laplacian-super-resolution | 30.8 | 0.8498 |
ml-craist-multi-scale-low-high-frequency | 30.23 | 0.8474 |
beyond-a-gaussian-denoiser-residual-learning | 29.81 | - |