HyperAI
HyperAI
Accueil
Actualités
Articles de recherche
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Rechercher sur le site...
⌘
K
Accueil
SOTA
Sur-résolution d'image
Image Super Resolution On Set14 2X Upscaling
Image Super Resolution On Set14 2X Upscaling
Métriques
PSNR
SSIM
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
PSNR
SSIM
Paper Title
Repository
DRCT-L
35.36
0.9302
DRCT: Saving Image Super-resolution away from Information Bottleneck
-
ML-CrAIST-Li
33.64
0.9213
ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
-
CPAT
34.91
0.9277
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
SwinOIR
33.97
0.922
Resolution Enhancement Processing on Low Quality Images Using Swin Transformer Based on Interval Dense Connection Strategy
-
MWCNN
33.7
-
Multi-level Wavelet-CNN for Image Restoration
-
MaIR
34.75
0.9268
MaIR: A Locality- and Continuity-Preserving Mamba for Image Restoration
-
CSRCNN
34.34
0.9240
Cascade Convolutional Neural Network for Image Super-Resolution
-
HAT-L
35.29
0.9293
Activating More Pixels in Image Super-Resolution Transformer
-
HAT
35.13
0.9282
Activating More Pixels in Image Super-Resolution Transformer
-
CPAT+
34.97
0.9280
Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution
-
DRCT
34.96
0.9287
DRCT: Saving Image Super-resolution away from Information Bottleneck
-
DRLN+
34.43
0.9247
Densely Residual Laplacian Super-Resolution
-
HBPN
33.78
0.921
Hierarchical Back Projection Network for Image Super-Resolution
-
DRCN [[Kim et al.2016b]]
33.04
-
Deeply-Recursive Convolutional Network for Image Super-Resolution
-
DnCNN-3
33.03
-
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
-
DBPN-RES-MR64-3
34.09
0.921
Deep Back-Projection Networks for Single Image Super-resolution
-
Deep CNN Denoiser
30.79
-
Learning Deep CNN Denoiser Prior for Image Restoration
-
HAT_FIR
35.17
-
SwinFIR: Revisiting the SwinIR with Fast Fourier Convolution and Improved Training for Image Super-Resolution
-
ML-CrAIST
33.77
0.922
ML-CrAIST: Multi-scale Low-high Frequency Information-based Cross black Attention with Image Super-resolving Transformer
-
HAN+
34.24
0.9224
Single Image Super-Resolution via a Holistic Attention Network
-
0 of 35 row(s) selected.
Previous
Next