HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Image Retrieval
Image Retrieval On Rparis Medium
Image Retrieval On Rparis Medium
Métriques
mAP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mAP
Paper Title
Repository
HED-N-GAN
76.6
Dark Side Augmentation: Generating Diverse Night Examples for Metric Learning
HOW
81.6
Learning and aggregating deep local descriptors for instance-level recognition
FIRe
85.3
Learning Super-Features for Image Retrieval
R – [O] –CroW
70.4
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
R–R-MAC
78.9
Particular object retrieval with integral max-pooling of CNN activations
HesAff–rSIFT–SMK*
59.0
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Token
89.34
Learning Token-based Representation for Image Retrieval
DELF–ASMK*+SP
76.9
Large-Scale Image Retrieval with Attentive Deep Local Features
HesAff–rSIFT–ASMK*
61.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELF–HQE+SP
84.0
Large-Scale Image Retrieval with Attentive Deep Local Features
Dino
75.3
Emerging Properties in Self-Supervised Vision Transformers
HesAff–rSIFT–HQE+SP
70.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
DELG+ α QE reranking + RRT reranking
88.5
Instance-level Image Retrieval using Reranking Transformers
HesAff–rSIFT–SMK*+SP
59.2
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R–GeM
77.2
Fine-tuning CNN Image Retrieval with No Human Annotation
ResNet101+ArcFace GLDv2-train-clean
84.9
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
HesAff–rSIFT–HQE
68.9
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
HesAff–rSIFT–VLAD
43.6
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
R – [O] –SPoC
69.2
Aggregating Deep Convolutional Features for Image Retrieval
R – [O] –MAC
66.2
Particular object retrieval with integral max-pooling of CNN activations
0 of 23 row(s) selected.
Previous
Next