HyperAI

Image Retrieval On Roxford Hard

Métriques

mAP

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèlemAP
large-scale-image-retrieval-with-attentive43.1
particular-object-retrieval-with-integral-max18.0
instance-level-image-retrieval-using64
hypergraph-propagation-and-community73
learning-token-based-representation-for-image66.57
revisiting-oxford-and-paris-large-scale-image13.2
revisiting-oxford-and-paris-large-scale-image35.8
large-scale-image-retrieval-with-attentive50.3
fine-tuning-cnn-image-retrieval-with-no-human38.5
revisiting-oxford-and-paris-large-scale-image36.4
emerging-properties-in-self-supervised-vision24.3
learning-super-features-for-image-retrieval-161.2
revisiting-oxford-and-paris-large-scale-image49.7
revisiting-oxford-and-paris-large-scale-image36.7
google-landmarks-dataset-v2-a-large-scale51.6
particular-object-retrieval-with-integral-max32.4
revisiting-oxford-and-paris-large-scale-image35.4
learning-and-aggregating-deep-local56.9
cross-dimensional-weighting-for-aggregated13.3
revisiting-oxford-and-paris-large-scale-image41.3
global-features-are-all-you-need-for-image80.2
2408-0328280
aggregating-deep-convolutional-features-for12.4