HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Image Retrieval
Image Retrieval On Oxf5K
Image Retrieval On Oxf5K
Métriques
MAP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
MAP
Paper Title
Repository
IsoMap [32]
77.9%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
Offline Diffusion
96.2%
Efficient Image Retrieval via Decoupling Diffusion into Online and Offline Processing
DIR+QE*
89%
Deep Image Retrieval: Learning global representations for image search
DELF+FT+ATT
83.8%
Large-Scale Image Retrieval with Attentive Deep Local Features
PCA [51]
82.6%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
SIFT+IME layer
62.2%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
LLE [33]
51.7%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
DELF+FT+ATT+DIR+QE
90.0%
Large-Scale Image Retrieval with Attentive Deep Local Features
IME
83.5%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
CNN+IME layer
92%
Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-scale Image Retrieval
siaMAC+QE*
82.9%
CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples
0 of 11 row(s) selected.
Previous
Next