HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Image Retrieval
Image Retrieval On Inaturalist
Image Retrieval On Inaturalist
Métriques
R@1
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
R@1
Paper Title
Repository
HAPPIER_F (ResNet-50)
71.0
Hierarchical Average Precision Training for Pertinent Image Retrieval
ROADMAP (DeiT-S)
73.6
Robust and Decomposable Average Precision for Image Retrieval
PNP Loss
66.6
Rethinking the Optimization of Average Precision: Only Penalizing Negative Instances before Positive Ones is Enough
Smooth-AP
67.2
Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval
ROADMAP (ResNet-50)
69.1
Robust and Decomposable Average Precision for Image Retrieval
Unicom+ViT-L@336px
88.9
Unicom: Universal and Compact Representation Learning for Image Retrieval
EfficientDML-VPTSP-G/512
84.5
Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning
Recall@k Surrogate loss (ResNet-50)
71.8
Recall@k Surrogate Loss with Large Batches and Similarity Mixup
HAPPIER (ResNet-50)
70.7
Hierarchical Average Precision Training for Pertinent Image Retrieval
Recall@k Surrogate loss (ViT-B/16)
83.0
Recall@k Surrogate Loss with Large Batches and Similarity Mixup
0 of 10 row(s) selected.
Previous
Next