HyperAI

Image Harmonization On Iharmony4

Métriques

MSE
PSNR
fMSE

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleMSEPSNRfMSE
region-aware-adaptive-instance-normalization40.2936.12469.60
deep-image-harmonization-via-domain52.3334.76549.96
intrinsic-image-harmonization38.7135.90400.29
dccf-deep-comprehensible-color-filter24.6537.87-
pct-net-full-resolution-image-harmonization18.8039.28238.27
dense-pixel-to-pixel-harmonization-via24.6238.07296.31
deep-image-harmonization-in-dual-color-spaces18.4739.17212.53
phnet-patch-based-normalization-for-portrait16.0538.54178.11
hierarchical-dynamic-image-harmonization16.5540.46179.49
bargainnet-background-guided-domain37.8235.88405.23
learning-global-aware-kernel-for-image19.9039.53220.44
image-harmonization-with-transformer30.3037.55320.78
harmonizer-learning-to-perform-white-box24.2637.84339.23
spatial-separated-curve-rendering-network-for35.5837.18274.99
hierarchical-dynamic-image-harmonization24.9938.63260.65
high-resolution-image-harmonization-via23.7538.23-