HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Regroupement d'images
Image Clustering On Imagenet Dog 15
Image Clustering On Imagenet Dog 15
Métriques
ARI
Accuracy
Backbone
NMI
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
ARI
Accuracy
Backbone
NMI
Paper Title
Repository
DPAC
0.598
0.726
ResNet-34
0.667
Deep Online Probability Aggregation Clustering
-
C3
0.28
0.434
-
0.448
C3: Cross-instance guided Contrastive Clustering
-
DAC
-
0.275
-
0.219
Deep Adaptive Image Clustering
DCCM
-
0.383
-
0.321
Deep Comprehensive Correlation Mining for Image Clustering
-
MiCE
0.286
0.439
-
0.423
MiCE: Mixture of Contrastive Experts for Unsupervised Image Clustering
-
DEC
-
0.195
-
0.122
Unsupervised Deep Embedding for Clustering Analysis
-
MAE-CT (best)
0.879
0.943
ViT-H/16
0.904
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
-
CC
0.274
0.429
-
0.445
Contrastive Clustering
-
ConCURL
0.531
0.695
-
0.63
Representation Learning for Clustering via Building Consensus
-
TCL
0.516
0.644
-
0.623
Twin Contrastive Learning for Online Clustering
-
ProPos*
0.675
0.775
ResNet-34
0.737
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
-
IDFD
0.413
0.591
-
0.546
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
-
VAE
-
0.179
-
0.107
Auto-Encoding Variational Bayes
-
PRO-DSC
-
0.840
-
0.812
Exploring a Principled Framework For Deep Subspace Clustering
GAN
-
0.174
-
0.121
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
-
SPICE
0.526
0.675
-
0.627
SPICE: Semantic Pseudo-labeling for Image Clustering
-
CoHiClust
0.232
0.355
ResNet-50
0.411
Contrastive Hierarchical Clustering
-
JULE
-
0.138
-
0.054
Joint Unsupervised Learning of Deep Representations and Image Clusters
-
MAE-CT (mean)
0.821
0.874
ViT-H/16
0.882
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
-
ProPos
0.627
0.745
ResNet-34
0.692
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
-
0 of 20 row(s) selected.
Previous
Next
Image Clustering On Imagenet Dog 15 | SOTA | HyperAI