HyperAI

Image Clustering On Imagenet Dog 15

Métriques

ARI
Accuracy
Backbone
NMI

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
ARI
Accuracy
Backbone
NMI
Paper TitleRepository
DPAC0.5980.726ResNet-340.667Deep Online Probability Aggregation Clustering-
C30.280.434-0.448C3: Cross-instance guided Contrastive Clustering
DAC-0.275-0.219Deep Adaptive Image Clustering
DCCM-0.383-0.321Deep Comprehensive Correlation Mining for Image Clustering
MiCE0.2860.439-0.423MiCE: Mixture of Contrastive Experts for Unsupervised Image Clustering
DEC-0.195-0.122Unsupervised Deep Embedding for Clustering Analysis
MAE-CT (best)0.8790.943ViT-H/160.904Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
CC0.2740.429-0.445Contrastive Clustering
ConCURL0.5310.695-0.63Representation Learning for Clustering via Building Consensus
TCL0.5160.644-0.623Twin Contrastive Learning for Online Clustering
ProPos*0.6750.775ResNet-340.737Learning Representation for Clustering via Prototype Scattering and Positive Sampling
IDFD0.4130.591-0.546Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
VAE-0.179-0.107Auto-Encoding Variational Bayes
PRO-DSC-0.840-0.812Exploring a Principled Framework For Deep Subspace Clustering
GAN-0.174-0.121Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
SPICE0.5260.675-0.627SPICE: Semantic Pseudo-labeling for Image Clustering
CoHiClust0.2320.355ResNet-500.411Contrastive Hierarchical Clustering
JULE-0.138-0.054Joint Unsupervised Learning of Deep Representations and Image Clusters
MAE-CT (mean)0.8210.874ViT-H/160.882Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
ProPos0.6270.745ResNet-340.692Learning Representation for Clustering via Prototype Scattering and Positive Sampling
0 of 20 row(s) selected.