HyperAIHyperAI

Image Clustering On Imagenet Dog 15

Métriques

ARI
Accuracy
Backbone
NMI

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
ARI
Accuracy
Backbone
NMI
Paper TitleRepository
DPAC0.5980.726ResNet-340.667Deep Online Probability Aggregation Clustering-
C30.280.434-0.448C3: Cross-instance guided Contrastive Clustering-
DAC-0.275-0.219Deep Adaptive Image Clustering
DCCM-0.383-0.321Deep Comprehensive Correlation Mining for Image Clustering-
MiCE0.2860.439-0.423MiCE: Mixture of Contrastive Experts for Unsupervised Image Clustering-
DEC-0.195-0.122Unsupervised Deep Embedding for Clustering Analysis-
MAE-CT (best)0.8790.943ViT-H/160.904Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget-
CC0.2740.429-0.445Contrastive Clustering-
ConCURL0.5310.695-0.63Representation Learning for Clustering via Building Consensus-
TCL0.5160.644-0.623Twin Contrastive Learning for Online Clustering-
ProPos*0.6750.775ResNet-340.737Learning Representation for Clustering via Prototype Scattering and Positive Sampling-
IDFD0.4130.591-0.546Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation-
VAE-0.179-0.107Auto-Encoding Variational Bayes-
PRO-DSC-0.840-0.812Exploring a Principled Framework For Deep Subspace Clustering
GAN-0.174-0.121Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks-
SPICE0.5260.675-0.627SPICE: Semantic Pseudo-labeling for Image Clustering-
CoHiClust0.2320.355ResNet-500.411Contrastive Hierarchical Clustering-
JULE-0.138-0.054Joint Unsupervised Learning of Deep Representations and Image Clusters-
MAE-CT (mean)0.8210.874ViT-H/160.882Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget-
ProPos0.6270.745ResNet-340.692Learning Representation for Clustering via Prototype Scattering and Positive Sampling-
0 of 20 row(s) selected.
Image Clustering On Imagenet Dog 15 | SOTA | HyperAI