HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Regroupement d'images
Image Clustering On Imagenet 10
Image Clustering On Imagenet 10
Métriques
Accuracy
NMI
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
NMI
Paper Title
Repository
JULE
0.300
0.175
Joint Unsupervised Learning of Deep Representations and Image Clusters
-
ConCURL
0.958
0.907
Representation Learning for Clustering via Building Consensus
-
DPAC
0.97
0.925
Deep Online Probability Aggregation Clustering
-
CoHiClust
0.953
0.907
Contrastive Hierarchical Clustering
-
VAE
0.334
0.193
Auto-Encoding Variational Bayes
-
SPICE (Full ImageNet pre-train)
0.969
0.927
SPICE: Semantic Pseudo-labeling for Image Clustering
-
TCL
0.895
0.875
Twin Contrastive Learning for Online Clustering
-
IDFD
0.954
0.898
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
-
MMDC
0.811
0.719
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
-
TAC
0.992
0.985
Image Clustering with External Guidance
-
ProPos*
0.962
0.908
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
-
CC
0.893
0.859
Contrastive Clustering
-
DEC
0.381
0.282
Unsupervised Deep Embedding for Clustering Analysis
-
C3
0.942
0.905
C3: Cross-instance guided Contrastive Clustering
-
DCCM
0.71
0.608
Deep Comprehensive Correlation Mining for Image Clustering
-
DAC
0.527
0.394
Deep Adaptive Image Clustering
GAN
0.346
0.225
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
-
ProPos
0.956
0.896
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
-
0 of 18 row(s) selected.
Previous
Next