HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Image Clustering
Image Clustering On Imagenet
Image Clustering On Imagenet
Métriques
ARI
Accuracy
NMI
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
ARI
Accuracy
NMI
Paper Title
Repository
MIM-Refiner (D2V2-ViT-H/14)
42.2
67.3
87.2
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
TEMI DINO (ViT-B)
45.9
58.0
81.4
Exploring the Limits of Deep Image Clustering using Pretrained Models
TURTLE (CLIP + DINOv2)
62.5
72.9
88.2
Let Go of Your Labels with Unsupervised Transfer
MIM-Refiner (MAE-ViT-H/14)
45.5
64.6
85.3
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
TEMI MSN (ViT-L)
48.4
61.6
82.5
Exploring the Limits of Deep Image Clustering using Pretrained Models
MAE-CT (ViT-H/16 best)
-
58.0
81.8
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
SCAN
-
39.9
72.0
SCAN: Learning to Classify Images without Labels
SeLa
-
-
66.4
Self-labelling via simultaneous clustering and representation learning
SeCu
41.9
53.5
79.4
Stable Cluster Discrimination for Deep Clustering
CoKe
35.6
47.6
76.2
Stable Cluster Discrimination for Deep Clustering
PRO-DSC
-
65.0
83.4
Exploring a Principled Framework For Deep Subspace Clustering
MAE-CT (ViT-H/16 mean)
-
57.1
81.7
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
0 of 12 row(s) selected.
Previous
Next