HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Regroupement d'images
Image Clustering On Cifar 100
Image Clustering On Cifar 100
Métriques
ARI
Accuracy
NMI
Train Set
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
ARI
Accuracy
NMI
Train Set
Paper Title
Repository
TCL
0.357
0.531
0.529
Train
Twin Contrastive Learning for Online Clustering
-
HUME
0.377
0.555
-
Train
-
-
MMDC
-
0.446
0.418
-
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
-
RUC
-
-
-
Train
Improving Unsupervised Image Clustering With Robust Learning
-
IMC-SwAV (Avg+-)
0.337
0.49
0.503
-
Information Maximization Clustering via Multi-View Self-Labelling
-
ITAE
0.5053
0.6502
0.771
Test
Improving Image Clustering with Artifacts Attenuation via Inference-Time Attention Engineering
-
DeeperCluster
-
0.189
-
Train+Test
Deep Clustering for Unsupervised Learning of Visual Features
-
SPICE*
0.422
0.584
0.583
Train
SPICE: Semantic Pseudo-labeling for Image Clustering
-
DPAC
0.393
0.555
0.542
-
Deep Online Probability Aggregation Clustering
-
TEMI DINO ViT-B
0.533
0.671
0.769
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
-
JULE
-
0.137
0.103
Train+Test
Joint Unsupervised Learning of Deep Representations and Image Clusters
-
ConCURL
0.303
0.479
0.468
Train
Representation Learning for Clustering via Building Consensus
-
TEMI CLIP ViT-L (openai)
0.612
0.737
0.799
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
-
PRO-DSC
-
0.773
0.824
-
Exploring a Principled Framework For Deep Subspace Clustering
TURTLE (CLIP + DINOv2)
0.834
0.898
0.915
-
Let Go of Your Labels with Unsupervised Transfer
-
DEC
-
0.185
0.136
Train+Test
Unsupervised Deep Embedding for Clustering Analysis
-
CC
0.266
0.429
0.431
-
Contrastive Clustering
-
IDFD
0.264
0.425
0.426
Train
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
-
DCCM
-
0.327
0.285
Train+Test
Deep Comprehensive Correlation Mining for Image Clustering
-
CoHiClust
0.299
0.437
0.467
-
Contrastive Hierarchical Clustering
-
0 of 30 row(s) selected.
Previous
Next
Image Clustering On Cifar 100 | SOTA | HyperAI