HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Classification d'images
Image Classification On Stanford Cars
Image Classification On Stanford Cars
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
ResMLP-12
84.6
ResMLP: Feedforward networks for image classification with data-efficient training
ViT-M/16 (RPE w/ GAB)
83.89
Understanding Gaussian Attention Bias of Vision Transformers Using Effective Receptive Fields
CeiT-S
93.2
Incorporating Convolution Designs into Visual Transformers
TransBoost-ResNet50
90.80%
TransBoost: Improving the Best ImageNet Performance using Deep Transduction
ResMLP-24
89.5
ResMLP: Feedforward networks for image classification with data-efficient training
CeiT-S (384 finetune resolution)
94.1
Incorporating Convolution Designs into Visual Transformers
LeViT-128S
88.4
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
LeViT-256
88.2
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
LeViT-384
89.3
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
EfficientNetV2-M
94.6
EfficientNetV2: Smaller Models and Faster Training
NNCLR
67.1
With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations
GFNet-H-B
93.2
Global Filter Networks for Image Classification
EfficientNetV2-S
93.8
EfficientNetV2: Smaller Models and Faster Training
CeiT-T
90.5
Incorporating Convolution Designs into Visual Transformers
SE-ResNet-101 (SAP)
85.812
Stochastic Subsampling With Average Pooling
-
LeViT-128
88.6
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
EfficientNetV2-L
95.1
EfficientNetV2: Smaller Models and Faster Training
ImageNet + iNat on WS-DAN
94.1
Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization
-
CaiT-M-36 U 224
94.2
Going deeper with Image Transformers
TResNet-L-V2
96.32
ImageNet-21K Pretraining for the Masses
-
0 of 24 row(s) selected.
Previous
Next